132 research outputs found

    Coming of Age

    Get PDF

    Quantum Eigenfaces: Linear Feature Mapping and Nearest Neighbor Classification with Outlier Detection

    Get PDF
    We propose a quantum machine learning algorithm for data classification, inspired by the seminal computer vision approach of eigenfaces for face recognition. The algorithm enhances nearest neighbor/centroid classifiers with concepts from principal component analysis, enabling the automatic detection of outliers and finding use in anomaly detection domains beyond face recognition. Assuming classical input data, we formalize how to implement the algorithm using a quantum random access memory and state-of-the-art quantum linear algebra, discussing the complexity of performing the classification algorithm on a fault-tolerant quantum device. The asymptotic time complexity analysis shows that the quantum classification algorithm can be more efficient than its classical counterpart. We showcase an application of this algorithm for face recognition and image classification datasets with anomalies, obtaining promising results for the running time parameters. This work contributes to the growing field of quantum machine learning applications, and the algorithm's simplicity makes it easily adoptable by future quantum machine learning practitioners

    Phoenix: DGA-Based Botnet Tracking and Intelligence

    Get PDF
    Abstract. Modern botnets rely on domain-generation algorithms (DGAs) to build resilient command-and-control infrastructures. Given the prevalence of this mechanism, recent work has focused on the anal-ysis of DNS traffic to recognize botnets based on their DGAs. While previous work has concentrated on detection, we focus on supporting intelligence operations. We propose Phoenix, a mechanism that, in ad-dition to telling DGA- and non-DGA-generated domains apart using a combination of string and IP-based features, characterizes the DGAs behind them, and, most importantly, finds groups of DGA-generated domains that are representative of the respective botnets. As a result, Phoenix can associate previously unknown DGA-generated domains to these groups, and produce novel knowledge about the evolving behavior of each tracked botnet. We evaluated Phoenix on 1,153,516 domains, in-cluding DGA-generated domains from modern, well-known botnets: with-out supervision, it correctly distinguished DGA- vs. non-DGA-generated domains in 94.8 percent of the cases, characterized families of domains that belonged to distinct DGAs, and helped researchers “on the field” in gathering intelligence on suspicious domains to identify the correct botnet.
    • …
    corecore